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Abstract— Southbound message delivery from the control
plane to the data plane is one of the essential issues in multi-
tenant clouds. A natural method of southbound message delivery
is that the control plane directly communicates with compute
nodes in the data plane. However, due to the large number
of compute nodes, this method may result in massive control
overhead. The Message Queue (MQ) model can solve this
challenge by aggregating and distributing messages to queues.
Existing MQ-based solutions often perform message aggregation
based on the physical network topology, which do not align
with the fundamental requirements of southbound message
delivery, leading to high message redundancy on compute nodes.
To address this issue, we design and implement VITA, the
first-of-its-kind work on virtual network topology-aware south-
bound message delivery. However, it is intractable to optimally
deliver southbound messages according to the virtual attributes
of messages. Thus, we design two algorithms, submodular-
based approximation algorithm and simulated annealing-based
algorithm, to solve different scenarios of the problem. Both
experiment and simulation results show that VITA can reduce
the total traffic amount of redundant messages by 45%-75%
and reduce the control overhead by 33%-80% compared with
state-of-the-art solutions.

Index Terms— Southbound message delivery, message queue,
virtual network topology, virtual private cloud.

I. INTRODUCTION

NOWADAYS, as more enterprise customers migrate their
on-premise workloads to the cloud, the user base

of a cloud provider overgrows in just a few years [2].
In current cloud deployment model, tenants deploy virtual
machines (VMs) on compute nodes in the cloud data plane
and manage the VMs through unified restful APIs by the
cloud control plane [3], [4]. The control plane processes
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tenants’ requests, and sends network configuration messages,
also called southbound messages, to computes nodes [5]. Over
the past decade, we are observing rapid growth of the number
of customers and the continuous expansion of individual
network size. As a result, the number of southbound messages
is mounting a rapid pace [6]. Thus, how to deliver the
southbound messages with low provisioning latency and low
control overhead has become a critical issue for hyper-scale
cloud deployments [7]–[10].

A natural method to deliver southbound messages is
direct end-to-end transmission via message passing interfaces
(MPI) [11] or remote procedure call (RPC) [12]. For example,
as one of the common protocols in distributed microservice
frameworks, RPC establishes TCP links between servers and
clients. In this way, each compute node directly communicates
with controllers and receives all the required messages. The
downside is that, as the network scale increases, the direct
communication method will cause a high load on the control
plane, leading to message congestion or loss, especially when
encountering burst southbound traffic [13]. This insight has
been discovered by the experiments [14], in which gRPC [15]
and Apache Thrift [16], two widely used open-source RPC
frameworks, are tested. The results show that when the payload
size of each message increases from 1KB to 10KB without
limitation on the sending rate, the successful queries per
second drops from 10K to 4K.

Therefore, it is necessary to reduce southbound control
overhead in a large-scale cloud by decoupling the data plane
from the control plane [17], [18]. As an alternative, the
Message Queue (MQ) model is one of the most widely
adopted messaging solutions used to build cloud infrastructure
and tenant applications in the cloud [19], [20]. Specifically,
a MQ server is used as a messaging middlebox between the
control plane and the data plane, which implements multiple
queues for storing and forwarding messages. Each queue is
responsible for forwarding a set of messages with the same
attributes (e.g., subnet). Under this model, the controller sends
messages to different queues according to message attributes,
while compute nodes receive messages in one or more queues
by their own needs [21], [22]. The key step in the MQ model
is to determine which queues the controller should send each
message to, and which queues each compute node receives
messages from.

One of the most intuitive ideas inside the MQ model is to
specify a queue for each compute node. That is, the messages
are classified at the granularity of a single computing node.
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In this way, the control plane sends each message to an
exclusive queue, and the corresponding computing node can
obtain the message by subscribing to the corresponding queue.
However, in reality, compared to a large number of compute
nodes (such as 5,500 compute nodes in CERN [6]), a message
queue server commonly supports a relatively small number
of queues. For example, the experiments of Apache Kafka
(a well-known open-source message queue) from [23] show
that setting up a few hundred queues will lead to frequent
crashes of the message queue server. Therefore, messaging at
the granularity of a single compute node is not feasible in a
large-scale cloud, and we must carry out message aggregation
with a proper granularity.

A common way for message aggregation is Node Group-
ing (NG) in OpenStack Nova [24]. That is, the compute nodes
are divided into several groups, and each group of nodes
shares one queue. Though this solution can reduce the number
of required queues on the server, it brings a new challenge:
message redundancy on each compute node. Specifically, once
a compute node subscribes to one queue, it should receive
all the messages from this queue to catch valid messages.
Suppose that a compute node expects to receive the network
configuration message m1, and two messages m1 and m2 are
sent to the same queue. Under this situation, the compute
node will receive the redundant message m2 because the node
can only judge whether the message is valid or not after
receiving it. In this way, message redundancy is inevitable. The
redundant messages will occupy valuable network bandwidth
and memory of compute nodes, resulting in a decrease in
the overall throughput. For example, when 10,000 compute
nodes are divided into 100 groups in a practical scenario, each
compute node in the same group will receive the same set of
messages while about 99% of messages are redundant. This
will significantly reduce the resource utilization of compute
nodes.

The underlying cause for high message redundancy is that
NG’s tight dependency on physical network topology does
not align with the fundamental requirements of southbound
message delivery in a multi-tenant cloud environment. That is,
although VMs of a specific tenant are distributed in multiple
nodes (likely across node groups), they are bounded to a log-
ical concept called virtual networks [25]. Its implementation
by cloud provider is Virtual Private Cloud (VPC) [26], [27],
which is a virtual L2 overlay built on top of L3 underlay
network. VPC offers isolation and privacy for tenants, and
allows tenant admins to configure IP ranges, subnets, security
groups, QoS policy with its boundary [26]–[28]. Therefore,
it is more efficient to aggregate messages with VPC (instead
of compute node) as the granularity to achieve low message
redundancy.

In this paper, we design a virtual network topology-aware
southbound message delivery system, called VITA. Specifi-
cally, we use VPC as the granularity to aggregate southbound
messages. At the same time, considering a large number
of VPCs, how to aggregate messages of these VPCs into
a limited number of message queues with both low control
overhead and low message redundancy is also very difficult.
To solve this issue, we propose two algorithms, submodular

based approximation algorithm and simulated annealing based
algorithm, to solve different scenarios. Both experiment and
simulation results show that VITA dramatically reduces the
total traffic amount of redundant messages by 45%-75% and
reduces the control overhead by 33%-80% compared with
state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
gives background and motivation through an example.
Section III presents the system overview of VITA. Section IV
formulates the southbound message delivery problem and
proposes two message aggregation and distribution algorithms
for different message delivery scenarios. Section V gives the
subscription procedure of the VITA agent on each compute
node. The results of the testbed and large-scale simulations
are presented in Section VI. Section VII gives some related
works for this paper and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first give an introduction to southbound
message delivery in clouds. Then we provide an example to
illustrate the pros and cons of both RPC and NG, which moti-
vate the idea of virtual network topology-aware southbound
message delivery scheme.

A. Southbound Message Delivery

Southbound message, also called network configuration
message, is a vital information carrier for the interaction
between the control plane and the data plane in the cloud
[5], [7]. As the size of the cloud network increases, so does
the number of southbound messages. Thus, how to achieve
resource-saving and efficient southbound message delivery has
become a fundamental problem in clouds [8]–[10].

There are two typical methods for southbound message
delivery in cloud networks. A natural one is the distrib-
uted end-to-end communication model [29], which provides
direct communications between the controller and compute
nodes. For example, as one of the most common protocols
in distributed frameworks, Remote Procedure Call (RPC)
[12], [13] transmits serialized messages via custom TCP
protocols or HTTP. As cloud network scale increases, the
distributed communications result in massive control overhead,
which leads to a significant increase in message delivery delay
and a drop in throughput. To cope with this problem, Mes-
sage Queue (MQ) [23] is adopted by many cloud platforms
(e.g., RabbitMQ in OpenStack [30] and Amazon Message
Queuing Service in AWS [27]). MQ, as an independent com-
ponent in distributed systems, is a more scalable southbound
message delivery solution, which provides decoupling and
asynchronous communication of the control plane and data
plane. Communications between the control /data plane and
the MQ server also relies on the TCP protocol. Considering a
large amount of compute nodes and a relatively small number
of queues supported by an MQ server, the Node Grouping
(NG) [24] method divides those nodes into several groups
according to some underlay network attributes e.g., subnet.
Then the controller sends the messages of the compute nodes
in the same group to the same queue. The compute nodes
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Fig. 1. Illustration of interaction between controllers and compute nodes. There are one controller and four compute nodes in a cloud. VMs of three VPCs
are distributed in those nodes. VM1-1, VM1-2, VM1-3 and VM1-4 belong to VPC 1. VM2-1, VM2-2, VM2-3 and VM2-4 belong to VPC 2. VM3-1, VM3-2,
VM3-3 and VM3-4 belong to VPC 3. There is a message queue server containing 2 queues in the second and third subplots. The three diagrams denote three
different ways of message delivery (RPC, NG and VITA).

themselves receive messages in one or more queues by their
own needs. However, the NG method inevitably brings redun-
dancy to southbound messages.

As the concept of Virtual Private Cloud (VPC) [26],
[31], [32] emerges in both the public and private clouds,
the message itself usually contains the attributes of VPC.
VPC builds an isolated virtual network environment for cloud
servers, cloud containers, cloud databases, and other resources
that users configure and manage independently, improves
the security of users’ cloud resources, and simplifies users’
network deployment. With the help of VPC, we can study
a new perspective on the problem of southbound messaging
through the virtual network topology.

B. A Motivation Example

A simple example of southbound message delivery is illus-
trated in Fig. 1. There are 1 controller, 4 compute nodes
and 3 VPCs in the cloud. The VMs of 3 VPCs are distrib-
uted on those compute nodes. Specifically, VMs of VPC 1
are deployed on compute nodes n1 (VM1-1), n2 (VM1-2,
VM1-3) and n3 (VM1-4). VMs of VPC 2 are deployed
on compute nodes n1 (VM2-1), n2 (VM2-2), n3 (VM2-3)
and n4 (VM2-4). VMs of VPC 3 are deployed on nodes
n1 (VM3-1), n3 (VM3-2) and n4 (VM3-3, VM3-4). For
ease of explanation, we assume that the control plane will
send a network configuration message for each VPC. The
performance results are summarized in Table I.

RPC establishes connections between the controller and all
compute nodes in Fig. 1(a). If a message will be sent to a VPC,
the controller sends this message to the destination nodes,
which contain VMs of this VPC, in turn. A mapping table is
maintained in the database to record the mapping relationship
between the VPCs and the compute nodes. To realize the
southbound message delivery, the controller queries this table
and determines compute nodes to which the messages should
be sent. For example, to process the configuration message
of VPC 1, the controller queries the database and obtains the
IP addresses of compute nodes (i.e., n1, n2 and n3). Then,

TABLE I

THE NUMBER OF MESSAGES RECEIVED BY EACH COMPUTE NODE,
RECEIVED BY THE DATA PLANE, AND SENT BY THE CONTROL

PLANE THROUGH THREE DELIVERY SCHEMES

the controller will send the configuration messages to these
three nodes through RPC. As a result, the controller sends
10 messages in total and the data plane receives 10 messages
accordingly.

The Node Grouping (NG) method divides the four compute
nodes into two groups, as shown in Fig. 1(b), and uses a
message queue server for storing and forwarding messages.
All the queues are identified by topics. The controller sends
message to one queue by publishing messages to a topic,
and each compute node receives messages from one queue
by subscribing to a topic. The MQ server in this example
contains two queues, which are identified by topics group1 and
group2, respectively. On processing the configuration message
of VPC 1, the controller queries the database and obtains the
nodes which require this message. The nodes n1 and n3 are in
group 1 and group 2, separately. So, the controller should send
two messages with the same content to the MQ server. One is
published to topic group1, and the other is to topic group2.
In all, the controller sends 6 messages in total. However, as the
compute nodes in the same group will receive all the messages
from a queue, a node will receive some invalid messages. For
example, node n2 receives 3 messages of VPCs 1, 2, and 3,
but only 2 messages from VPCs 1 and 3 are necessary. Node
n4 receives 3 messages with 1 unnecessary message of VPC 1.
As a result, all the compute nodes in the data plane receive
12 messages, 2 of which are unnecessary.

C. Our Intuition

We observe that the two solutions of southbound message
delivery have advantages and disadvantages. RPC allows each
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compute node to receive only the required messages without
any redundancy. In small-scale clouds, perhaps this is the
most proper solution. However, in large-scale distributed cloud
scenarios, the pressure of the control plane will be weighty,
and the message delivery latency may be very high [14]. As for
the node grouping solution, the pressure of the control plane
can be reduced while the load on the data plane (redundant
messages) significantly increases.

A question immediately following the above discussion
is that can we do better by using MQ with less redundant
messages and low control overhead? Clearly, we should use
as many queues as possible for southbound message delivery.
However, too many queues will lead to frequent crashes of
the message queue server [23]. Therefore, how to effectively
aggregate many messages into a limited number of queues
is necessary. As mentioned above, southbound messages have
not only physical attributes (e.g., IP address of the destination
node) but also virtual attributes (e.g., VPC ID) under the virtual
private cloud architecture. Moreover, messages from the same
VPC are more likely to be sent to the same virtual address in
the virtual network [31], [33]. In other words, aggregating and
delivering southbound messages according to the attributes of
the VPC is more intuitive and efficient than existing solutions.

As shown in Fig. 1(c), since there are 3 VPCs and 2 queues
in this example, the controller aggregates the messages of
VPCs 1 and 2, and sends these messages to the same queue
(with topic vn1). Meanwhile, the controller sends the messages
of VPC 3 to another queue (with topic vn2). Each compute
node subscribes to different topic(s) according to the messages
it needs. For example, because node n2 only needs the
messages of VPCs 1 and 2, it only subscribes to topic vn2.
Similarly, since node n4 needs the messages of VPCs 2 and 3,
it should subscribe to both topics vn1 and vn2. Accordingly,
the controller sends 3 messages, and all the compute nodes
in the data plane totally receive 11 messages, 1 out of which
is unnecessary. As a result (shown in Table I), this scheme
achieves lower control overhead compared with RPC, and
achieves better data/control plane performance compared with
NG. Motivated by this example, we design a virtual network
topology-aware southbound message delivery scheme, called
VITA.

III. VITA OVERVIEW

A. System Overview

As shown in Fig. 2, VITA mainly consists of three parts:
the control plane (composed of the controllers), the data
plane (composed of the compute nodes), and the message
queue server. Specifically, the control plane consists of a
set of distributed microservices, and one of its functions is
to manage the virtual network through southbound message
delivery. To build the correspondence between VPCs and
topics, a mapping table from VPCs to topics, instead of
VPCs to IPs, is maintained. We will describe in detail how
to determine the correspondence in Section IV.

VMs belonging to different VPCs are distributed on dif-
ferent compute nodes in the data plane. For more efficient
implementation, a control agent is designed on each node to be
responsible for subscribing to topics, distinguishing messages,

Fig. 2. System overview of VITA. VITA mainly consists of three parts.
The control plane is responsible for determining the correspondence between
VPCs and topics. The data plane is responsible for subscribing to topics and
configuring VMs or OVS. The message queue server is responsible for the
asynchronous communication between the control and data planes. Besides,
a database maintains a mapping table from VPCs to topics.

and parsing requests. The agent manages all virtual machines
on the node and knows which VPCs they belong to. We give a
detailed design for the agent in Section V to meet the dynamic
update requirement.

As an essential component, the MQ server is responsible
for the asynchronous communication between the control and
data planes. However, this is not the focus of our paper.
In Section VI, we test the performance of our proposed
algorithms on different open-source MQs to illustrate the
efficiency and versatility of the VITA system.

B. Workflow of VITA

Fig. 2 also briefly describes the system workflow. The
system process is mainly triggered by two events. One is the
configurations by a tenant. When one tenant configures their
VPC through provided API (e.g., subnet, security group), the
control plane parses the request and constructs correspond-
ing southbound messages. Then it queries the database and
determines which topic(s) the messages should be published
to. Next, the controller sends the messages to corresponding
queues in the MQ server via the specified TCP port and
asynchronously waits for the reply of the processing result.
The other one is the launch of a new VM on the compute
node. When a VM is added or migrated, the control agent
queries the database to get the topics. Then it subscribes to
those topics for receiving the required messages of different
VPCs. Finally, the agent receives messages from specific
queues and judges whether it is valid or not according to
the VPC ID of the message. If no VM needs this message,
it will be discarded. Otherwise, the control agent will perform
corresponding operations (e.g., setting IP, configuring routing
table) on VMs or OVS (Open vSwitch) according to the
content of the message and return the operation result to the
control plane.

With the help of MQ and the database shown in Fig. 2,
VITA can realize the decoupling of the control plane and the
data plane. That is, the control plane and data plane avoid
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TABLE II

IMPORTANT NOTATIONS

directly communications, and changes in the data plane will
not directly affect the control plane. The control plane needs to
know not the physical location (e.g., IP address) of the node,
but the message identity in the virtual network (e.g., VPC
ID). Due to the synchronous communication service provides
by the message queue server, the communication between the
control plane and the message queue is asynchronous, and we
use a call-back function to handle message processing results.
In this way, the control plane does not have to continuously
wait for the processing result when concurrent messages are
sent. The communication between compute nodes and the
message queue is also asynchronous, which indicates that
the processing of the message on the compute node does
not hinder the delivery of the messages. The operation in
the data plane will not block the control plane, and will not
significantly affect the system throughput when dealing with
burst southbound traffic.

IV. VITA CONTROL PLANE DESIGN

Determining the correspondence between VPCs and topics
is the key step in the VITA control plane. To achieve efficient
southbound message delivery with low message redundancy,
we first formulate the virtual network southbound message
delivery (VSMD) problem in our design. Then we present an
efficient approximation algorithm based on a submodular func-
tion and analyze its approximation performance. Furthermore,
we extend this scheme to more practical scenarios.

A. Network Models

A typical cloud consists of the control plane and the
data plane. Specifically, a cluster of controllers constitute
the control plane, and are responsible for managing the
network, including southbound message delivery. The data
plane consists of a set of compute nodes, and is responsible

for providing computing resources for tenants. We use N =
{n1, n2, . . . , n|N |} to represent the set of compute nodes. The
set of VPCs in the cloud is denoted as V={v1, v2, . . . , v|V |}.
Tenants create VPCs in the cloud by deploying VMs on
compute nodes.

We adopt the MQ model to implement southbound message
delivery. Specifically, an MQ server containing a set of queues,
serves as the messaging middlebox in a cloud and adopts the
publish/subscribe model [34], [35]. The queues are responsible
for storing and forwarding southbound messages from the
control plane to the data plane. Each queue is identified by
a topic. When the controller sends messages to one queue,
we say that the controller publishes messages to the topic. The
compute nodes receive messages from a queue by subscribing
to the corresponding topic. The topic set is defined as T =
{t1, t2, . . . , tK}, where K = |T | is the number of queues in
the MQ server.

B. Problem Formulation

The section gives the formulation of the virtual network
southbound message delivery (VSMD) problem. Specifically,
we use VPC as the granularity to aggregate southbound
messages. Due to the prior work of traffic matrix prediction
in clouds [36], [37], it is reasonable to assume that we can
obtain the expected traffic intensity of southbound messages
for each VPC v ∈ V , which is denoted as f(v).

The key step of VSMD is to determine to which queue(s)
the controllers should deliver each message, and from which
queues each compute node receives messages. Thus, we use
binary variable yt

v to denote whether the controller will publish
the messages of VPC v to topic t or not. Meanwhile, we use
binary variable zt

n to represent whether the compute node n
will subscribe to topic t or not.

In order to deliver southbound messages successfully,
we should consider the following two constraints. 1) Each
compute node must obtain all the required messages. That is,
each compute node should receive the messages of VPC v if
a VM belonging to v is deployed on this node. The constant
Γv

n indicates whether the compute node n contains the VMs
belonging to VPC v or not. 2) The traffic amount of messages
on each node should not exceed its capacity. We use s(n)
to denote the message processing capability of node n. Once
a compute node subscribes to a topic, it will receive all the
messages in this queue, which results in message redundancy.
Thus, our objective is to minimize the total traffic amount on
compute nodes (or in the data plane). We give the following
problem definition:

min
∑
n∈N

b(n)

S.t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
t∈T yt

v ≥ 1, ∀v ∈ V∑
t∈T zt

nyt
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V zt

nyt
vf(v) = b(n), ∀n ∈ N, v ∈ V

b(n) ≤ s(n), ∀n ∈ N

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(1)
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The first set of inequalities indicates that each VPC sub-
scribes to at least one topic. The second set of inequalities
represents that all the VMs on any compute node should
receive all the required messages. Specifically, zt

n · yt
v rep-

resents whether compute node n receives messages of VPC v
through the queue specified as topic t or not, and

∑
t∈T zt

nyt
v

means whether compute node n can receive messages of VPC
v or not. When Γv

n = 1, compute node n must receive
messages of VPC v. The third set of equalities shows the
message traffic amount on each compute node n, denoted
as b(n). The fourth set of inequalities expresses the message
processing capacity constraint on each compute node n. Our
objective is to minimize the total message traffic amount on
compute nodes, that is, min

∑
n∈N b(n).

Theorem 1: The VSMD problem is NP-hard.
Proof: Our VSMD problem remains NP-hard even if the

mappings between VPCs and topics are determined (i.e., vari-
ables yt

v are fixed). Under this case, the problem turns to be a
Weighted Set Covering Problem (WSCP) [38] for each com-
pute node. More specifically, each node tends to receive all the
required messages with as few redundant messages as possible
by selecting several weighted sets (i.e., sets of messages in
different queues). Since the Weighted Set Covering Problem
is a special case of our problem, we can conclude that the
VSMD problem is NP-hard. �

C. Algorithm Design for VSMD

1) Algorithm Overview: If the controller sends the messages
of each VPC to only one queue, the total traffic amount
of messages delivered by the controller can be minimized.
Considering that the controller is often the bottleneck in a
cloud, it is reasonable to assume that messages of each VPC
are sent to only one queue. To deal with this scenario, this
section presents a submodular-based approximation algorithm
to solve the VSMD problem. We will consider the scenario
where the messages of each VPC can be forwarded to more
than one queue in the next section.

In this section, we regard that the messages of each VPC
are sent to only one queue. As a result, the VPC set can be
divided into K subsets, and each VPC in the same subset is
assigned with the same topic. Initially, all VPCs belong to
the same set. Our algorithm consists of K iterations where
K is the number of queues (i.e., the number of topics) in the
MQ server. In each iteration, we determine a subset of V that
can reduce the total traffic amount of messages the most and
assign all the VPCs in this subset with one topic.

2) Preliminaries: We first give the definition of the traffic
amount of messages of VPC set V ′ ⊆ V as follows:

Definition 1: For any VPC set V ′, the total traffic amount
of messages of all the VPCs in V ′ is

R(V ′) = |Sub(V ′)|
∑
v∈V ′

f(v) (2)

where Sub(V ′) is the set of compute nodes which contain
VMs belonging to any VPC v ∈ V ′.

We need to divide the VPCs into K sets so that messages
of each VPC will be published to one of K topics. Initially,

when all the VPCs belong to one set, the total traffic amount
of messages on all compute nodes can be expressed as
R(V ) = |N | ·

∑
v∈V f(v), where |N | is the number of

compute nodes. If we divide VPCs into K sets, denoted
as {V1, V2, . . . , VK}, the traffic amount of all southbound
messages becomes

∑K
i=1 R(Vi). In other words, the traffic

amount of messages will be reduced as much as possible
by dividing VPCs into K sets. That means the minimization
problem in Eq. (1) can be converted into the following equiv-
alent maximization problem in Eq. (3), where

∑K
i=1 R(Vi) =∑

n∈N b(n). Then the optimal solution to Eq. (3) is also the
optimal solution to Eq. (1).

maxR(V )−
K∑

i=1

R(Vi)

S.t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
t∈T yt

v ≥ 1, ∀v ∈ V∑
t∈T zt

nyt
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V zt

nyt
vf(v) ≤ s(n), ∀n ∈ N, v ∈ V

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(3)

This problem is similar to a clustering problem, where we
need to divide the VPC set V into K clusters to maximize
the traffic amount reduction on compute nodes. Our algorithm
is based on efficient computations of a submodular set func-
tion ϕ, which defines the maximum traffic amount reduction
of messages by dividing the VPCs into several sets. We give
the definition of the submodular set function ϕ as follows.

Definition 2: Given the set Φ, which contains disjoint sub-
sets of V , the traffic amount reduction of messages achieved
by dividing the VPCs according to Φ is defined as:

ϕ(Φ) = R(V )−
∑
S∈Φ

R(S)−R(V −M) (4)

where M is the set of VPCs that can be covered by all the
sets in Φ. That is, M =

⋃
S∈Φ S.

Next, we give the definition of submodularity, and prove
that the function ϕ is submodular.

Definition 3: (Submodularity): Given a finite set E, a real-
valued function z on the set of subsets of E is called
submodular if z(S ∪ {e})− z(S) ≤ z(S′ ∪ {e})− z(S′) for
all S′ ⊆ S ⊆ E and e ∈ E − S.

Lemma 2: Given the set U as the power set of V , the
function ϕ defined in Eq. (4) is submodular on U .

Proof: Without loss of generality, we consider an arbitrary
set Φ ⊆ U and an arbitrary set A ⊆ V . Assume that A does
not intersect with other sets in Φ, i.e., A ∩ S = ∅, ∀S ∈ Φ.
Then, we have

ϕ(Φ∪{A})−ϕ(Φ) = R(V−M)−R(V−M−A)−R(A) (5)

where M =
⋃

S∈Φ S. Given an arbitrary subset Φ′ ⊆ Φ, it also
follows

ϕ(Φ′∪{A})− ϕ(Φ′) = R(V −M ′)−R(V −M ′A)−R(A)
(6)

where M ′ =
⋃

S∈Φ′ S.
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Note that R(V−M)−R(V−M−A)−R(A) also represents
the traffic amount reduction by dividing set V −M into two
subsets: V−M−A and A. Since Φ′ is the subset of Φ, V −M
is the subset of V −M ′ accordingly. Thus, we have:

R(V −M)−R(V −M −A) ≤ R(V −M ′)
−R(V −M ′ −A) (7)

Combining Eqs. (5), (6) and (7), we know that:

ϕ(Φ ∪ {A})− ϕ(Φ) ≤ ϕ(Φ′ ∪ {A})− ϕ(Φ′) (8)

According to Definition 3, we show that the set function ϕ is
submodular. �

To maintain the processing capacity constraint of a single
compute node n, i.e., b(n) ≤ s(n), we only focus on the set
A ⊂ V without breaking the constraint, that is,

∑
v∈A

f(v) ≤ minn∈Sub(A) s(n) (9)

We call the sets satisfying Eq. (9) as feasible sets. The
feasible sets can be explored efficiently by simply performing a
depth-first search [39] on the VPC set V . During each iteration
of the depth-first search, we gradually expand the candidate
feasible set by adding untraversed VPC and simultaneously
update the traffic of the affected compute nodes.

3) Algorithm Description: Given these insights, we propose
the submodular-based southbound message delivery algorithm
(SM-SMD) in detail, which is formally described in Alg. 1.
SM-SMD consists of three steps. In the first step, the algorithm
computes a set of feasible sets Π in advance and starts with
an empty set Φ (Line 3). In the second step (Lines 5-12),
it loops through the possible feasible set S ∈ Π to find the
maximum function value ϕ(Φ∪{S}). The algorithm performs
K − 1 iterations until we obtain K sets of VPCs. In the
third step (Lines 13-17), we obtain the mapping relationship
between VPCs and topics (i.e., yt

v).
4) Performance Analysis: We analyze the approximation

performance of our proposed algorithm based on the following
lemma.

Lemma 3: For a real-valued submodular and non-
decreasing function z(S) on U , the optimization problem
maxS⊆U{z(S) : |S| ≤ K, z(S) is submodular} can reach
a (1-1/e) approximation factor if the algorithm performs
greedily [40].

Theorem 4: Our SM-SMD achieves a (1-1/e) approxima-
tion factor for the maximization problem in Eq. (3).

Proof: The function ϕ is submodular by Lemma 2.
Besides, for any set Φ of subsets of V and A ⊆ V with
A∩S = ∅, ∀S ∈ Φ, it follows ϕ(Φ∪{A})−ϕ(Φ) ≥ 0, and the
equal sign is held only in the case where Sub(V −

⋃
S∈Φ S) =

Sub(A). Thus, the function ϕ is non-decreasing. By Lemma 3,
our proposed algorithm can reach a (1 − 1/e) approximation
factor for the VSMD problem in Eq. (3). For the submodular
function, this result is the best that can be achieved with any
efficient algorithm. In fact, [41] proved that any algorithm
that is allowed to only evaluate the submodular function at
a polynomial number of sets will not be able to obtain an
approximation guarantee better than (1− 1/e). �

Algorithm 1 SM-SMD: Submodular-Based Algorithm for
VSMD
1: Step 1: Initialization
2: Compute the set of feasible sets Π
3: Φ← ∅
4: Step 2: Greedy Selection
5: while |Φ| ≤ K − 1 do
6: Set tmp← 0, opt← 0
7: for S ∈ Π− Φ do
8: tmp← ϕ(Φ ∪ {S})
9: if tmp > opt then

10: opt← tmp, S∗ ← S
11: end if
12: end for
13: Φ← Φ + {S∗}
14: end while
15: Φ← Φ + {V −

⋃
S∈Φ S}

16: Step 3: Assignment of VPCs and Topics
17: i← 1
18: for S ∈ Φ do
19: Set yti

v = 1 if v ∈ S
20: i← i + 1
21: end for

Fig. 3. An example of SM-SMD algorithm. There are 5 nodes, 5 VPCs,
3 queues and 15 messages to deliver (1, 2, 3, 4, and 5 messages are sent to
VPCs a, b, c, d, and e). Left: VPC distribution in 5 nodes. Right: details of
2 iterations.

Example. We give a simple example to demonstrate the
flow of the algorithm and how it finds the optimal solution,
as shown in Fig. 3. In this example, we assume that there
are 5 VPCs, 3 queues and 15 messages to deliver (1, 2, 3, 4,
and 5 messages are sent to VPCs a, b, c, d, and e, respectively).
The detailed steps of the algorithm are shown in Algorithm 1.
At the first iteration, the maximum value of ϕ(Φ) we can get
is 24 by dividing VPCs a, b, and c into one set (queue 1), and
VPCs d and e into another set (queue 2). Then in the second
iteration, we get the maximum value of ϕ(Φ) by dividing
VPCs a and b into one set (queue 1), and VPC c into another
set (queue 3). As a result, we obtain R(V )−

∑K
i=1 R(Vi) = 30,

which is also the optimal solution to Eq. (3).
We should note that the number of feasible sets may

be exponential. However, the work [42] has shown
that polynomial number of feasible sets are enough
for performance optimization. To achieve the trade-off
optimization between algorithm complexity and network
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performance, we only construct the polynomial number
(with input the number of VPCs) of feasible sets. Under
this condition, the time complexity of SM-SMD is O(K|V |)
since the algorithm runs in K − 1 iterations, and the function
ϕ is calculated O(|V |) times in each iteration.

D. Simulated Annealing Algorithm for VSMD

The SM-SMD algorithm considers the scenarios where
the control plane may be the bottleneck in a cloud. How-
ever, in some other scenarios, the data plane is more likely
to become a bottleneck [4], [43]. Under these scenarios,
we hope to reduce more traffic amount of messages in the
data plane. To this end, we give a simulated annealing based
southbound message delivery algorithm where southbound
messages of one VPC can be sent to more than one queue
(i.e.,

∑
t∈T yt

v ≥ 1). It should be noted that this algorithm
will increase the control overhead and MQ overhead compared
with SM-SMD, but reduce traffic amount on compute nodes.
(i.e., reduce the message redundancy).

Simulated annealing [44] is a probabilistic optimization
algorithm which takes L, t0, tm, and α as inputs. L is the
number of iterations at each temperature T . t0 and tm are
the initial value and the end threshold of the temperature T ,
respectively. α is the decreasing rate of T . The temperature T
is used to determine the probability of accepting the worse
state. Note that, the parameter selection of the simulated
annealing algorithm has been extensively studied [44], [45].
We determine the parameters based on the work [44] to
achieve a high probability for converging to the global optimal
solution.

Algorithm 2 SA-SMD: Simulated Annealing Based Algo-
rithm for VSMD
1: Input L, t0, tm,α
2: Run SM-SMD to obtain the solution: yt

v and zt
n = Γv

nyt
v

3: Init temperature T = t0, k = 0
4: while T ≥ tm do
5: while k ≤ L do
6: Select a random VPC v and a random topic t
7: Set yt

v ← 1− yt
v.

8: Set Δ to be difference of total traffic amount by topic
re-selection.

9: if Δ > 0 then
10: Set yt

v ← 1− yt
v with probability 1− e−

Δ
T

11: end if
12: k ← k + 1
13: end while
14: Set k = 0
15: T ← αT
16: end while
17: Output the results

SA-SMD first initializes the parameters and the initial state.
As SM-SMD can obtain a feasible assignment of VPCs and
topics, SA-SMD takes the results of SM-SMD as the initial
state. Then it executes a two-level iteration. In the each round
of the inner iteration (Lines 4-11), the algorithm randomly

selects a VPC and a topic to change their mapping relationship
(i.e., yt

v = 1− yt
v) (Lines 6-7) and calculates the difference in

the total traffic amount of messages on all compute nodes by
re-selecting topics, denoted as Δ (Line 8). If Δ ≤ 0, it means
that the message redundancy is reduced, and we accept the
current state. Otherwise, we refuse the current state with
probability 1− e−

Δ
T (Lines 9-10). Each inner iteration runs in

L rounds. In the outer iteration, temperature T is decreased
by a factor α at the end of the inner iteration (Line 13). Then,
if T ≥ tm, the algorithm terminates and outputs the final
result. Otherwise, it performs a new inner iteration with a
decreased temperature. The SA-SMD algorithm is formally
described in Alg. 2.

In each round of the inner iteration, the algorithm calculates
the difference of traffic amount received by each compute
node by re-selecting topics, which costs O(|N |) time. This
calculation loops L times at each temperature T , which drops
from t0 to tm at the decreasing rate of α. Thus, we execute
the calculation for logα(tm/t0) times and the overall time
complexity of SA-SMD is O(L · logα(tm/t0) · |N |). Since
the simulated annealing algorithm utilizes the result of the
submodular algorithm as input, it can obtain a relatively good
initial solution at the beginning, which greatly increases the
probability of finding the optimal solution. At the same time,
although we have no guarantee of the sub-optimal solution
accuracy, we can guarantee that the solution obtained by
SA-SMD can reduce more message redundancy than the
sub-optimal result of the submodular algorithm SM-SMD.

V. VITA AGENT DESIGN

Although the VITA controller determines the mapping rela-
tionship between VPCs and topics, there are still two issues
to consider when implementing topic subscription for each
compute node. The first issue is that how compute nodes
subscribe or unsubscribe from relevant topics when VMs are
added, removed, or migrated on them accurately and quickly.
The second issue is that when the traffic in the network
changes and the VPC and topic mapping needs to be updated,
how does the controller notify the compute nodes to update so
that messages can be transmitted in an orderly manner without
loss. To address the two problems, this section describes the
topic subscription of the VITA agent, which offers a stable
and consistent southbound messaging service.

A. Dynamic Subscription

To realize the decoupling of control and data planes, we rely
on a metadata database to store the topic mapping information
as shown in Fig. 2, which enables the agent to quickly establish
a connection with the MQ server when the node initializes
or recovers from a crash. When a VM belonging to a new
VPC is added to a compute node, the agent should update
the topics subscribed by this node. To achieve the dynamic
subscription, the agent first gets the VPC to which the VM
belongs. If it has not subscribed to the related topic, the agent
will query the database and get the corresponding topic. Then
it subscribes to this topic and begins to receive messages from
the corresponding queue. The same operation will also be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:44:29 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SOUTHBOUND MESSAGE DELIVERY WITH VIRTUAL NETWORK TOPOLOGY AWARENESS IN CLOUDS 9

Fig. 4. Two dynamic subscription procedures of VITA agent. 1) The VM
belonging to VPC 2 is newly added. Then the agent queries the database and
subscribes to the corresponding Topic 2 (dotted yellow line). 2) The mapping
relationship of VPC 2 is switched from Topic 2 to Topic 1. Then the controller
sends a switch message to Topic 2 and modifies the database (solid blue
line). When the agent receives the switch message, it will unsubscribe from
Topic 2 and subscribe to Topic 1 (solid yellow line).

performed when a VM is migrated or updated. With the help
of the database and MQ server, the control plane and the data
plane are completely decoupled, and the compute node does
not need to frequently send requests to the controller.

We illustrate this dynamic subscription procedure more
intuitively with an example, as shown in Fig. 4. There are
two VPCs (VPC 1 and 2) in Fig. 4 and two related topics
(Topic 1 and 2). The compute node contains two VMs,
one of which is a newly added VM belonging to VPC 2.
To obtain the topic corresponding to VPC 2, the VITA agent
queries the database and gets Topic 2 as a result. Since the
agent has not subscribed to Topic 2 yet, it subscribes to this
topic and receives messages from the corresponding queue
(represented by dotted yellow lines). This way, compute nodes
can implement dynamic subscriptions without communicating
with the controller.

B. Seamless Switching

Considering the dynamics of user requests and network
environment, the VITA controller will periodically run the
algorithms in Section IV to update the subscription relation-
ship between VPCs and topics to ensure the efficiency of
the VITA system. However, this operation may result in high
message delay or message loss. If the control plane cannot
notify the data plane to switch topics in time when the mapping
relationship between VPCs and topics changes, the message
delivery delay will increase significantly due to the decoupling
of the control plane and the data plane. Moreover, message
loss occurs when a node does not wholly receive the messages
stored in the subscribed queue.

To solve these two problems, we design a new message
type called switch message. The switch message
includes the previous and next topics for one VPC. When
the VITA controller updates the mapping relationship between
a VPC and a topic, it will first modify the database. Then
the controller constructs a switch message and sends
it to the MQ server with the previous topic. On receiving
the switch message, the messages in the previous queue

have been entirely consumed. Then, the agent unsubscribes
from the previous topic if it is no longer needed and sub-
scribes to the new topic if it has not been subscribed before.
Through the switch message, the agent can switch seam-
lessly and timely without message loss.

Fig. 4 also illustrates the switching procedure, where the
mapping relationship of VPC 2 is switched from Topic 2 to
Topic 1. The controller firstly updates the database and sends
a switch message (VPC 2: from Topic 2 to Topic 1) to Topic 2
(represented by solid blue lines). When the agent receives the
switch message from Topic 2, it will unsubscribe from Topic 2
and then subscribe to Topic 1 immediately (represented by the
solid yellow line). This way, the agent achieves seamless topic
switching and receives all the required messages.

VI. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

This paper studies how to deliver southbound mes-
sages in clouds with low control overhead and low mes-
sage redundancy. The code is open-source and available at
https://github.com/futurewei-cloud/vita. We adopt five main
metrics for performance evaluation. (1) The control over-
head represents the resource consumption of the controller
for southbound message delivery. In the testbed experiment,
we measure the controller’s CPU utilization during system
running as the control overhead. Meanwhile, we record the
total traffic amount of messages sent by the controller as
the control overhead in large-scale simulations. (2) The MQ
overhead indicates the resource consumption of the MQ server
to process southbound messages. According to [23], disk I/O
utilization is the main performance bottleneck of the MQ
server. Thus, we use disk I/O utilization as the MQ overhead
in the testbed experiment. As for large-scale simulations,
we measure the total traffic amount of the messages through
the MQ server as the MQ overhead. (3) The total traffic
amount of all compute nodes. (4) The maximum traffic amount
of all compute nodes. We measure the total traffic amount
of southbound messages received by each compute node,
and calculate the total (or maximum) value of all compute
nodes as the third (or the fourth) metric. (5) The average
message delivery delay. We record the time interval from the
controller sending the southbound message to the compute
node receiving the message as the message delivery delay.
We compute the average delivery delay of all messages during
the system running as this metric.

In this paper, we propose two message aggregation and
distribution algorithms, SM-SMD and SA-SMD, based on
VITA. We denote the corresponding schemes as VITA-SM
and VITA-SA, respectively. Specifically, considering that the
performance of a simulated annealing algorithm generally
depends on values of the parameters, we set our algorithm
parameters as in [46], where L is 16 times the number of
VPCs, t0 = 1000, tm = 0.05 and α = 0.95. To evaluate the
performance of our VITA-SM and VITA-SA, we choose the
following three state-of-the-art solutions as benchmarks.

1) The first one is RPC [12], which is a widely used
method in distributed microservice framework for
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Fig. 5. Control overhead, MQ overhead, total and maximum traffic vs. number of VPCs.

communications between servers and clients. In clouds,
RPC establishes TCP connections between the controller
and all compute nodes. Messages are sent from the
controller to corresponding compute nodes one by one.

2) The second one is NG [24], which performs southbound
message delivery using message queues. To deal with
a limited number of message queues on the server,
compute nodes are divided into certain groups according
to a certain attribute (such as physical location). The
nodes in the same group will subscribe to a same topic
(i.e., queue) and receive the same messages.

3) The third one is denoted as VITA-KM. Since there is no
exact work about southbound message delivery based on
virtual network topology, we use the classic clustering
algorithm, K-means [47], to aggregate and distribute
messages with VPC as the granularity. VITA-KM takes
the number of topics as the input k, and divides the set
of VPCs into k clusters.

B. Simulation Evaluation

We refer to a practical private cloud deployed in CERN
(European Organization for Nuclear Research) [6] to design
our simulation. The CERN private cloud contains 5,500 com-
pute nodes. We change the scale of the virtual network by
varying the number of VPCs from 1 × 104 to 9 × 104.
We assume that the VMs are distributed on the compute
nodes randomly, and the number of topics is set to 1,100
by default. As a result, NG divides the compute nodes into
1,100 groups, and each group contains 5 compute nodes. The
default expected message traffic intensity for each VPC is set
as 1Mbps. Moreover, we use power law for the message-size
distribution, where 20% of all messages account for 80% of
traffic volume as observed in [48].

To analyze the performance of VITA-based algorithms in
different cloud scenarios, we test the scalability performance
by scaling the number of VPCs in the public cloud and by
expanding the expected message traffic of each VPC in the
private cloud. In the first set of simulations, we observe the
control overhead, the MQ overhead, and the total/maximum
traffic amount on compute nodes by changing the number of
VPCs in the cloud. The results are shown in Figs. 5(a)-5(d).
Specifically, Fig. 5(a) shows that the control overhead of
all solutions increases with the increasing number of VPCs,
and the growth rate of VITA-based solutions is significantly
slower than that of RPC and NG. For example, given 7× 104

VPCs, the control overheads of VITA-SM, VITA-KM, and
VITA-SA are 3.6Gbps, 3.6Gbps, and 6.8Gbps, respectively,
while those of RPC and NG are 35.1Gbps and 17.5Gbps,
respectively. It means that VITA-based solutions can reduce
the control overhead by over 80% and 60% compared with
RPC and NG, respectively. That is because the more messages
delivered by the controller, the higher its control overhead.
Specifically, the controller directly communicates with com-
pute nodes by RPC, and each compute node only receives the
required messages. NG reduces the control overhead by 50.1%
compared with RPC by adopting the MQ model but still results
in a higher control overhead compared with VITA-based
solutions. The reason is the nodes are grouped based on the
physical network topology, resulting in significant differences
in required messages of nodes in the same group. As for
three VITA-based solutions, both VITA-SM and VITA-KM
can reduce the control overhead by about 47% compared
with VITA-SA. That is because VITA-SA may send the same
message to multiple queues, while VITA-SM and VITA-KM
only send each message to exactly one queue.

Fig. 5(b) shows the MQ overhead of NG and three
VITA-based algorithms by changing the number of VPCs.
Note that we do not evaluate this metric for RPC since RPC
does not use the MQ model. The results of the MQ overhead
are of a similar trend with those of the control overhead for
these algorithms. That is because both control overhead and
MQ overhead are positively correlated with the total traffic
amount of southbound messages. For instance, when there are
5×104 VPCs, the MQ overheads of VITA-SM, VITA-KM, and
VITA-SA are 2.5Gbps, 2.5Gbps, and 4.9Gbps, respectively,
while that of RPC is 12.4Gbps. That is, both VITA-SM and
VITA-KM can reduce the MQ overhead by about 79.8% and
60.5% compared with NG and VITA-SA, respectively.

Figs. 5(c)-5(d) show that the total/maximum traffic amount
on compute nodes increases for all solutions with the increas-
ing number of VPCs. RPC and NG achieve the lowest
and highest total/maximum traffic amount on compute nodes
among all solutions, respectively. That is because RPC using
the direct communication method will not cause message
redundancy, while NG using a physical host-based grouping
scheme will result in high redundancy. Note that, since RPC
will cause an unacceptable control overhead as shown in
Fig. 5(a), it is not feasible in large-scale clouds. We use the
total/maximum traffic amount on compute nodes of RPC as
the low bound to compare with other solutions. For example,
given 6 × 104 VPCs in the cloud, the total traffic amount on
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Fig. 6. Control overhead, MQ overhead, total and maximum traffic vs. message sending rate.

Fig. 7. Control overhead, MQ overhead, total and maximum traffic vs. number of topics.

compute nodes is 61Gbps, 65Gbps, and 90Gbps for VITA-SA,
VITA-SM, and VITA-KM, respectively, while that of NG is
198Gbps. These results mean that VITA-SM reduces the total
traffic amount on compute nodes by 29% and 66% compared
with VITA-KM and NG, respectively, while slightly increases
the traffic amount on compute nodes by 6% compared with
VITA-SA. The total/max traffic amount on compute nodes of
VITA-SA is lower than that of VITA-SM because it sends
messages to more queues with higher control overhead to
achieve lower message redundancy.

The second set of simulations shows the performance of
the proposed algorithms under different expected traffic inten-
sities. Figs. 6(a)-6(d) shows the control overhead, the MQ
overhead, and the total/maximum traffic amount on compute
nodes by changing the message sending rate of each VPC
from 1Mbps to 9Mbps. The number of VPCs is set as
1 × 104 by default. As the message sending rate increases,
all performance metrics (i.e., control overhead, MQ overhead,
total and maximum traffic amount) increase for all algorithms,
with VITA-based solutions achieving better performance than
the other solutions. For example, when the message sending
rate of each VPC reaches 6Mbps, the control overhead of
VITA-SM is 2.5Gbps, while the control overhead of RPC and
NG is 25Gbps and 10.6Gbps, respectively. More specifically,
VITA-SM reduces the control overhead by about 90% and
40% compared with RPC and NG, respectively. Among VITA-
based solutions, VITA-SM works better than VITA-KM with
the message sending rate increasing. Meanwhile, VITA-SA has
a higher control/MQ overhead compared with VITA-SM but a
lower total/max traffic amount. It means that VITA-SA trades
for lower message redundancy by sacrificing a small amount
of control plane resources compared with VITA-SM.

Since the number of topics greatly impacts the algorithms’
performance, we compare NG, VITA-SA, VITA-KM, and
VITA-SM by changing the number of available queues (topics)
in the MQ server. The results are shown in Figs. 7(a)-7(d),
where the horizontal axis is the number of topics in the MQ
server, ranging from 1× 103 to 10× 103.

Figs. 7(a) and 7(b) show the control/MQ overhead with
the number of topics increasing. In comparison, the pro-
posed VITA-SM solution has the lowest control/MQ overhead.
For example, given 5 × 103 topics, the control overhead of
VITA-SM is 0.5Gbps while that of RPC is 5Gbps; the MQ
overhead of VITA-SM is 0.5Gbps while that of NG is 4.8Gbps.
More specifically, VITA-SM reduces the control/MQ overhead
by about 90% compared with NG, and VITA-KM has the
same control/MQ overhead as VITA-SM. That is because both
VITA-SM and VITA-KM will only send each message to
the corresponding topic once. The control/MQ overhead of
VITA-SA is slightly higher than VITA-SM since it may send
a message to multiple topics. Figs. 7(c) and 7(d) show that
the total/maximum traffic on compute nodes of NG, RPC,
VITA-SM, VITA-SA, and VITA-KM decreases as the number
of VPCs increases. However, RPC has the minimum traffic
amount on nodes since no redundant message is received.
NG has the highest total/maximum traffic on nodes when
topics are less than 4 × 103. For example, when there are
3 × 103 topics, the total traffic for NG, RPC, VITA-SM are
33Gbps, 28Gpbs, 20Gpbs, and the maximum traffic on each
node for NG, RPC, VITA-SM are 0.35Gbps, 0.3Gbps, and
0.21Gbps, respectively. Note that when the number of topics
is more than 5500, we can assign a topic for each node. Thus,
each node will not receive redundant messages from other
nodes, and the performance of NG will be the same as RPC.
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Fig. 8. The performance of proposed algorithms using different MQs.

From these simulation results, we can draw some conclu-
sions. First, as shown in Fig. 5(a), RPC is not feasible in
large-scale clouds because it will cause unacceptable control
overhead. Second, as shown in Figs. 5(a)-6(d), VITA-based
solutions can achieve superior performance, including lower
control/MQ overhead and lower total/max traffic amount com-
pared with NG. Third, VITA-SM reduces the total/maximum
traffic amount by 29%/37% and achieves similar control/MQ
overhead performance compared with VITA-KM. Fourth,
compared with VITA-SA, VITA-SM reduces the control/MQ
overhead by 47%/49% and increases the total/maximum traffic
amount by 6%/15%. Fifth, as shown in Figs. 7(a)-7(d), VITA-
based solutions outperform NG with different number of
topics, especially when the number of topics is small.

C. System Implementation

1) Implementation on the Platform: In general, we use
10 servers running Ubuntu 18.04 with Linux kernel 5.4 to
build the testbed. All the servers are equipped with a 22-core
Intel Xeon 6152 processor, 128GB memory and an Intel
X710 10GbE NIC. Among them, two servers are used as the
controller and the message queue server, respectively. We take
a small cloud deployed in GoDaddy [49] as a reference, which
contains 350 compute nodes. We rely on the virtualization
technology for system implementation to expand the testing
topology and collect testing data conveniently. Specifically,
we deploy 350 VMs, each equipped with 1 vCPU and 1GB
memory, as compute nodes on the remaining 8 servers. The
number of VPCs and topics is by default set to 300 and 100.

We run three sets of experiments on the platform. The
expected traffic intensity for messages of each VPC is set to
1Mbps and the bandwidth constraint of each compute node is
1Gbps by default. The message-size distribution is the same
as in simulations where 20% of all messages account for
80% of traffic amount. These messages are distributed in size
from 512Bytes to 4MB. According to [50], we generate two
types of messages: (1) unicast messages, whose sources and
destinations are randomly picked, e.g., IP address segment
configuration messages; (2) multicast messages, which sim-
ulate the traffic with multiple destinations, e.g., subnet and
security group configuration messages. Each type of message
accounts for half of the total traffic amount.

2) Test Results: The first set of experiments compares
the overall performance of all benchmarks using three
well-known MQ frameworks. Specifically, we take three
open-source MQ frameworks for comparison: Apache Kafka

(version 2.6.0) [51], RabbitMQ (version 3.8.19) [30], and
Apache Pulsar (version 2.6.1) [52]. Kafka is the most widely
deployed open-source MQ framework, and RabbitMQ is used
in OpenStack. As for Pulsar, it is one of the fastest-growing
MQ frameworks in recent years. The physical parameter set-
tings of these MQ frameworks are the same as in [23]. We set
100 topics for each MQ framework and generate 200 VPCs by
default. As shown in Fig. 8, VITA-SM performs better com-
pared with NG and VITA-KM in all three MQ frameworks.
Moreover, VITA-SM achieves lower control/MQ overhead, but
results in higher message delay and higher total traffic amount
on compute nodes than VITA-SA. That means, VITA-SM is
more suitable for scenarios with limited processing capacity
on the control plane or the MQ server, while VITA-SA is
more suitable for scenarios with limited processing capacity
on compute nodes. Note that, as shown in Figs. 8(a)-8(d),
RabbitMQ achieves the lowest total traffic amount, while
achieves the smallest message delivery delay, compared with
the other two frameworks. The reason is that RabbitMQ aims
to obtain low message transmission delay, while the total
throughput cannot be guaranteed. To save the space, we only
conduct a detailed performance comparison of all solutions
when using Kafka in the following since it is the most widely
used framework.

The second set of experiments observes the control/MQ
overhead, average message delay, and total traffic amount of
NG, VITA-SA, VITA-KM and VITA-SM by changing the
number of available topics in the MQ server. The results
are shown in Fig. 9, where the horizontal axis is the num-
ber of topics in the MQ server, ranging from 50 to 300.
No matter how many topics there are in the MQ server,
NG always achieves the worst performance compared with
other solutions. For example, as shown in Fig. 9(b), given
200 topics, the average disk I/O utilization of VITA-SM,
VITA-KM, VITA-SA and NG is 34%, 38%, 40% and 63%,
respectively. That is, VITA-SM can reduce the average disk
I/O utilization by about 10.5%, 15% and 46% compared with
VITA-KM, VITA-SA and NG, respectively. We should note
that, as shown in Fig. 9(c), when the number of topics exceeds
200, the average message delay will increase significantly as
the number of topics increases. That means the MQ server
can only support a limited number of topics. Thus, we should
carry out message aggregation with a proper granularity.

The third set of experiments compares the control/MQ
overhead, average message delay, and total traffic amount of
NG, VITA-SA, VITA-KM and VITA-SM by changing the
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Fig. 9. Control overhead, MQ overhead, average message delay and total traffic vs. number of topics.

Fig. 10. Control overhead, MQ overhead, average message delay and total traffic vs. number of VPCs.

Fig. 11. Control overhead, MQ overhead, average message delay and total traffic vs. message sending rate per VPC.

number of VPCs in the cloud. The results are shown in Fig. 10,
where the number of VPCs ranges from 200 to 1,200. As the
number of VPCs increases, all performance metrics (e.g., con-
trol overhead, MQ overhead, message delay and total traffic
amount) increase for all algorithms. NG always achieves the
worst performance compared with the other three VITA-based
solutions. For example, when the number of VPCs reaches
1000, the average message delay of NG, VITA-SA, VITA-KM
and VITA-SM is 54ms, 29ms, 45ms and 34ms. That means,
VITA-SM can reduce the average message delay by 37%
and 24.4% compared with NG and VITA-KM, respectively.
VITA-based solutions are more efficient compared with NG,
since southbound messages usually have VPC attributes, and
VITA-based solutions aggregate messages with VPC as the
granularity.

The fourth set of experiments shows the control/MQ over-
head, average message delay, and total traffic amount of NG,
VITA-SA, VITA-KM, and VITA-SM by changing sending rate
of messages in the cloud. The results are shown in Fig. 11,
where the message sending rate per VPC varies from 1Mbps to
6Mbps. As the message sending rate increases, all performance
metrics (e.g., control overhead, MQ overhead, message delay,

and total traffic amount) increase for all algorithms, with
NG always achieving the worst performance compared with
the other three VITA-based solutions. For example, when
the message sending rate per VPC reaches 4Mbps, the total
traffic amount of NG, VITA-SA, VITA-KM, and VITA-SM
is 1.64Gbps, 1.01Gbps, 1.23Gbps, and 9.2Gbps, respectively.
That means VITA-SM can reduce the total traffic amount on
compute nodes by about 38.4% and 17.9% compared with
NG and VITA-KM, respectively. VITA-SA and VITA-SM
work better than the other two algorithms at different message
sending rates. Meanwhile, VITA-SM saves more resources in
the control plane (e.g., CPU resources of the controller), while
VITA-SA cares more about the data plane (e.g., bandwidth of
compute nodes).

From these experimental results, we can draw some conclu-
sions. First, as shown in Fig. 8, VITA-SM performs better in
all three MQ frameworks compared with NG and VITA-KM,
and achieves similar performance compared with VITA-SA.
Second, Fig. 9 illustrates that the MQ server can only support
a limited number of topics. Thus, we have to aggregate
messages with a proper granularity. Third, the performance
of NG lags behind all three VITA-based solutions for all
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metrics (e.g., control/MQ overhead, message delay and traffic
amount on compute nodes). Fourth, our proposed VITA-SM
performs better than VITA-KM, especially in the metrics of
message delay and total traffic amount, which shows efficiency
of our proposed message aggregation algorithm. Fifth, our
proposed VITA-SM and VITA-SA algorithms have different
application scenarios. If the control/MQ overhead become the
network bottleneck, VITA-SM is a better choice compared
with VITA-SA. Conversely, if resources on compute nodes are
the network bottleneck, VITA-SA is a better choice compared
with VITA-SM.

VII. RELATED WORKS

In this section, we summarize recent research works on
cloud computing, virtualization technologies, and prior efforts
on message queue.

A. Cloud Computing

Research on cloud computing is popular in recent years.
Different from classic networks, cloud computing is gaining
a great scope towards IT industries, academics, and indi-
vidual users because of its ease of use, on-demand access
to network resources, minimal management cost [53]. Some
works propose new cloud network architectures [4], [9], [54]
to support fast-growing user scale and traffic demand. Some
works apply VM scheduling policies [55]–[57] to achieve
energy efficiency and minimize task/flow completion times.
Some works propose on-demand routing protocols [58]–[60]
to achieve high bandwidth and low latency in clouds. Distrib-
uted services produce significant network traffic inside clouds.
To address it, some resource management frameworks [7],
[61]–[63] are proposed. However, such frameworks will add
more complexity and control overhead to the whole cloud
network management.

B. Virtualization

Virtualization technologies partition hardware and thus
provide flexible and scalable computing platforms. Virtual
machine techniques, such as VMware [64] and Xen [65],
offer virtualized IT-infrastructures on demand. Virtual network
advances, such as VPN [32], [33] and VPC [26], [31], [32],
support users with a customized network environment to
access cloud resources. Virtualization techniques are the
bases of cloud computing since they render flexible and
scalable hardware services. Some propose new underlying
technologies [4], [66], [67] to simplify cloud virtualiza-
tion. Some utilize virtualization for security [53], [68]–[70]
in cloud networks. Moreover, cloud computing platforms
(e.g., OpenStack [24],CloudStack [71], Eucalyptus [72], Open-
Nebula [73]), are mainly deployed in public and private
clouds as an infrastructure-as-a-service (IaaS), providing vir-
tual servers and other resources to users.

C. Message Queue

The idea of using Message Queue (MQ) in clouds or
data centers has emerged since one decades ago but lacked
attention until the recent rapid expansion of cloud network

scale [19], [74], [75]. Eqs [76] presents an elastic message
queue architecture and a scaling algorithm that can be adapted
to any message queue to make it scale elastically. The authors
of [77] propose a hybrid decentralized practical byzantine fault
tolerance blockchain Framework with two-step verification for
OpenStack message queue service. WaggleDB [78] builds a set
of protocols and a cloud-based data streaming infrastructure in
case that each tier can be scaled by adding more independent
resources provisioned on-demand in the cloud. However, all
these MQ frameworks are either not user-friendly or not
paying attention to the redundancy problems caused by MQ.

VIII. CONCLUSION

In this paper, we give the system overview of VITA
and formulate the VSMD problem for minimizing the total
amount of messages received by compute nodes. We propose
a submodular-based algorithm for this problem and analyze
its approximation performance. We further consider how to
extend this scheme for more scenarios. Both the simulation
and experimental results show high efficiency of our proposed
VITA system.
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